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ABSTRACT 

Here we describe the development of a 
sequential implicit formulation and algorithm for 
coupling fluid-heat flow, reactive transport, and 
geomechanics. We consider changes in pore 
volume from dissolution and precipitation 
caused by chemical reactions, in addition to 
coupled flow and geomechanics. Moreover, we 
use the constitutive equations for a multiple 
porosity model for fractured geothermal 
reservoirs, employing nonlinear permeability 
and Young’s modulus for the fractures and 
dynamically updating them every time step. For 
a well-defined simple test problem, we explore 
the differences in coupled flow and 
geomechanics with and without reactive 
transport.  

1. INTRODUCTION 

Enhanced geothermal reservoirs that exhibit 
increased permeability resulting from shear 
stimulation of a fracture volume can provide 
large heat extraction accompanied by economic 
flow rates and energy production. Fractures are 
highly compressible compared with intact rock, 
so they may affect overall geomechanical 
responses significantly, even though they 
occupy a smaller bulk volume. Permeability can 
be significantly affected by deformation of 
fractures through the relationship between 
fracture aperture and permeability.  Furthermore, 
chemical or thermal disequilibrium between 
injection fluid and the reservoir host rock can 
result in dissolution and precipitation, changing 
the porosity. Such changes in pore volume can 
change fluid pressure, and hence effective stress 
and strain. Permeability changes through 
mineral-water reactions and geomechanics 
affects solute transport which can lead to strong 
thermal, hydrological, mechanical, and chemical 
coupling.  

 
The multiple continuum approach is a widely 
used approach that can represent fracture–rock 
matrix systems consisting of highly permeable 
fracture contimuum transporting fluid over the 
domain, while the matrix store fluid and convey 
it to the highly permeable fracture continuum 
(Barenblatt et al., 1960; Berryman, 2002; 
Sonnenthal et al., 2005; Taron et al., 2009). In 
geothermal reservoirs, we may introduce more 
than two continua (e.g., representing fracture 
and several rock matrix continua) for more 
accurate modeling of heat flow. Recently, Kim 
et al. (2012) proposed formulation and 
sequential numerical algorithms for coupled 
fluid-heat flow and geomechanics within such a 
multiple continuum approach. 
 
This study is based on the latter study, and 
employing nonlinear dynamic strain-dependent 
permeability and geomechanical moduli in order 
to capture complex interactions between flow 
and geomechanics, as applied to shale gas 
reservoirs (Kim and Moridis, 2012b). Moreover, 
we consider the changes in pore volume, 
induced by chemical reaction, when solving for 
fluid and heat flow. 
 
We have recently implemented these 
functionalities within ROCMECH (RM for 
short), an in-house geomechanics simulator, 
which is coupled to TOUGHREACT (TR), a 
flow and reactive transport simulator (Kim et al., 
2012). We solve fluid and heat flow, 
geomechanics, and reactive transport problems 
sequentially, adopting implicit solution schemes 
for the subproblems (i.e., sequential implicit 
method). Based on the coupled simulator, TR-
RM, flow-geomechanics properties and 
variables (e.g., porosity, permeability, fluid-
phase pressure and saturation, displacement, 
effective stress, geomechanical moduli, failure 
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status) are updated dynamically along with the 
transient coupled simulation.   
 
We performed several verification test cases for 
TR-RM (e.g., the Terzaghi and Mandel 
problems), as well as a 1D reactive transport 
problem. Then, we investigated a 2D geothermal 
problem, using coupled thermo-poro-mechanics 
simulations with and without reactive transport, 
and analyze the differences between them in the 
results. 

2. MATHEMATICAL FORMULATION 

We briefly describe the governing equations of 
geomechanics, fluid and heat flow with reactive 
solute transport. Then, we introduce constitutive 
equations for the multiple porosity model, the 
changes in pore volume from chemical reactions, 
nonlinear permeability, and Young’s modulus. 

2.1. Governing Equation 
The governing equation for geomechanics is 
based on the quasi-static assumption, written as 
 

0gDiv! =+ b! ,                                            (1) 
 
where Div is the divergence operator, ! is the 
total stress tensor, and b!  is the bulk density. An 
infinitesimal transformation is used to allow the 
strain tensor, ! , to be the symmetric gradient of 
the displacement vector, u ,  
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where Grad is the gradient operator.  
 
The governing equations for fluid and heat flow 
are derived from the conservation law (Pruess et 
al., 1999), as follows, 
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where the superscript k  indicates the fluid 
components or heat. dtd /)(!  denotes the time 
derivative of a physical quantity )(!  relative to 
the motion of the solid skeleton. km  is the mass 
of component k  or heat. kf , and kq are its flux 

and source terms on the domain !  with the 
boundary ! , respectively, where n  is the 
normal vector of the boundary. 
 
The flux for multiphase multicomponent flow is 
supplemented by Darcy’s and Fick’s laws. The 
heat flux is obtained by heat conduction and 
convection laws. The governing equation for 
solute transport with reactive transport is 
obtained from mass conservation (Xu et al., 
2011), described as 
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where Lagrange’s porosity,! , is defined as the 
ratio of the pore volume in the deformed 
configuration to the bulk volume in the reference 
(initial) configuration. iC  is the concentration of 

the ith chemical. iv and iD are the Darcy 
velocity vector and diffusion coefficient of the ith 
chemical, respectively. im! and mr are the 
stoichiometric coefficient of  the ith chemical in 
the mth chemical and the reaction rate of the mth 
chemical, respectively. cn is the total number of 

the chemicals, and iq is the possible external 
source of the ith chemical. 

2.2. Constitutive relations 
We employ the constitutive equations proposed 
by Kim et al. (2012) for the multiple porosity 
model, extended from the isothermal double 
porosity elastic model (Berryman, 2002) to the 
nonisothermal multiple porosity elastoplastic 
model, described as         
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where the subscript l indicates a material (sub-
element) with a gridblock. '! , drK , upC  are the 
effective stress tensor, upscaled drained bulk 
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modulus, and upscaled elasticity tensor at the 
level of the gridblock, respectively. 

JlJlJl m ,,, / !""# = . *
,Jlb and *~

lb are the 

coupling coefficients, where lb  and lb
~

 are 
written as  
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where  l! , lT ,! , l! ,  and lK  are the Biot 
coefficient,  thermal dilation coefficient, volume 
fraction, and drained bulk modulus for material l, 
respectively. sK is the intrinsic solid grain bulk 
modulus. drK , and upC  are described as 
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where lC  is the isothermal drained elasticity 

tensor for material l. mn is the total number of 

the materials. ImJlL ,,,  represents a modulus for 
the multiple porous model, similar to the Biot 
modulus matrix, and the inverse of its matrix 
form (i.e., 1!L ) can be expressed as an example 
of an vapor-water two-phase system with the 
fracture-rock matrix double porosity model, 
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where fN and MN are the inverse of the Biot 

modulus matrices, fM and MM , for the 

fracture and rock matrix, respectively. lmD is the 
coupling coefficient between fluid flow and heat 
flow. 
 
The effective stress at each subelement l, 'l! , is 
obtained as 
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where l!  is the local total strain at each sub-
element l. According to Kim et al. (2012), 
Lagrange’s porosity of material l without 
chemical reaction, M

l! , can be written as 
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where v!  is the total volumetric mean stress. 
Equation 11 is typically known as the porosity 
change, when reservoir simulation is coupled to 
geomechanics. The additional change in the 
porosity due to reactive solute transport can be 
formulated as (Xu et al., 2006) 
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where lm,! is the mth solid volume fraction of 
material l. Then, from Equations (11) and (12), 
we obtain the total porosity change due to 
geomechanics and geochemistry, as follows. 

!
=

""

+##
$

%
&&
'

( )"
+=

)+)=)

cn

m
lmv

l

l

lllTl
s

ll

l

l

C
l

M
ll

b

Tp
KK

1
,

,

2

3

*+*,
-

*..*
..

***

. 

                                                                       (13) 
For permeability and stiffness of the fractured 
medium, we employ the strain-dependent 
permeability and Young’s modulus. For an 
example of 2D plane strain geomechanics 
coupled to fluid flow, as used in Kim and 
Moridis (2012b), we use in this study 
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where pk and E  are the absolute permeability 
and Young’s modulus. We may use different 
types of the nonlinear permeability and Young’s 
modulus for specific conditions or reservoirs. 
 
For modeling elastoplastic shear failure, we use 
the Drucker-Prager and Mohr-Coulomb models, 
which are widely used to model failure in 
cohesive frictional materials. The Drucker-
Prager model is expressed as  
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where I1 is the first invariant of the effective 
stress and J2 is the second stress invariant of the 
effective deviatoric stress. The Mohr-Coulomb 
model is given as 
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where 1'! 2'! 3'! are the maximum, 
intermediate, and minimum principal effective 
stresses. f!  and d!  are the friction and 

dilation angles, respectively. hc is the cohesion. 

3. NUMERICAL INTEGRATION 

For space discretization, we use finite volume 
and finite element methods for flow and 
geomechanics, respectively. In time 
discretization, the backward method is used as 
typically employed in reservoir simulation. The 
initial total stress satisfies the geomechanical 
equilibrium with the boundary conditions.  We 
implement in TR-RM the numerical modeling 
for the Mohr-Coulomb and Drucker-Prager 
models with slight modification of the 
algorithms proposed by Wang et al. (2004), 
which has been applied to the numerical studies 
in Kim et al. (2012a). TR-RM thus has the 
capability to simulate hydro-shearing (shear 
activation of fractures by hydraulic 
pressurization) as a continuum shear failure 
process.   
 
In numerical integration, we use a sequential 
implicit approach, by which fluid and heat flow, 
geomechanics, and reactive solute transport are 
solved sequentially, with each subproblem being 
solved implicitly. We extend the modified fixed-
stress-split method in coupling between fluid 
and heat flow and geomechanics for the multiple 
porosity model, to a chemo-thermo-poro-
mechanics approach. Specifically, from 
Equation 13, we can easily implement the 

extended and modified fixed stress split by using 
porosity function and correction, as follows. 

( )

( ),

3

1,11

1
,

2

!!!

!

"#!"+"!

"!"++

"$$
%

&
''
(

)
+

#!
+="#

nC
l

n
l

c
T

n
l

c
p

n
v

l

ln
l

c
TllT

n
l

c
p

s

n
ll

n
l

ln
l

Tp

bT

p
KK

**

+
,

*--

*
--

 

                                                                       (18) 
where nnn )()()( 1 !"!=!# + . c

p! and c
T!  are 

introduced as relaxation parameters for 
numerical stabilization due to chemical reaction. 
Even though the modified fixed stress split for 
the multiple porosity model is unconditionally 
stable for thermo-poro-mechanics (Kim et al., 
2012), it cannot guarantee unconditional 
stability of chemo-thermo-poro-mechanics, 
because thermo-poro-mechanics is a subproblem 
of chemo-thermo-poro-mechanics. (Determining 
c
p! and c

T!  is an open question, which will not 
be discussed in this study.) 
 
For permeability and Young’s modulus of the 
fracture medium, we use the explicit treatment, 
as follows. 
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4. NUMERICAL EXAMPLES 

We first conduct verification tests for TR-RM’s 
chemo-thermo-poro-mechanics approach. To 
this end, we first introduce the Terzaghi and 
Mandel problems to verify the simulator in 
poromechanics. Then we compare TR only with 
TR-RM in a 1D elastic single-phase flow 
problem, because the 1D elastic problem can 
allow the decoupling of flow and geomechanics, 
using an exact rock compressibility. After 
verification, we compare the numerical results 
among chemo-thermo-poro-mechanics, thermo-
poro-mechanics without reactive transport, and 
TR-only with and without reactive transport. 
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4.1. Terzaghi’s and Mandel’s problems 
Figure 1 shows the domains for the Terzaghi and 
Mandel problems. For Terzaghi’s problem, we 
have 31 gridblocks, the sizes of which are 
uniform, 1.0 m. Liquid water is fully saturated, 
and the initial pressure is 8.3 MPa. We impose a 
drainage boundary on the left side and no-flow 
conditions on the right side. The initial total 
stress is also 8.3 MPa over the domain, and we 
set 16.6 MPa as the side burden, two times 
greater than the initial total stress. The Young’s 
modulus and Poisson ratio are 450 MPa and 0.0, 
respectively. Only horizontal displacement is 
allowed. The monitoring well is located at the 
right end.  
 
For Mandel’s problem, we have 540!
gridblocks. The size of the gridblocks in the x 
direction is uniform, 0.5 m, while the size in the 
z direction is non-uniform. The medium is fully 
saturated with water, and the initial pressure is 
10.0 MPa. We impose drainage boundaries at 
the left and right sides, and no-flow conditions 
on the other sides. Initial total stress is also 10.0 
MPa over the domain, and we set 20.0 MPa for 
the overburden, two times greater than the initial 
total stress. The Young’s modulus and Poisson 
ratio are 450 MPa and 0.0, respectively. 2D 
plane strain geomechanics is employed. The 
monitoring well is located in the middle of the 
domain, as shown in Figure 1. No gravity is 
considered for the Terzaghi and Mandel 
problems. The permeability and porosity are 

151051.6 !" m2, 6.6 mD (1 Darcy= 131087.9 !"  
m2), and 0.425, respectively for both problems. 
Biot’s coefficient is 1.0. 
 

 
Figure. 1. The domains for Terzaghi’s (top) and 

Mandel’s problems (bottom). 
 
Figures 2 and 3 show that the results from TR-
RM match the analytical solutions. The 

numerical results correctly capture the 
instantaneous pressure buildup for Terzaghi’s 
problem and the Mandel-Cryer effect for 
Mandel’s problem—these could not be captured 
by a flow-only simulation. 
 

 
Figure. 2. Comparison between the analytical 

solution and the result of TR-RM for 
Terzaghi’s problem. 

 

 
Figure 3. Comparison between the analytical 

solution and the result of TR-RM for 
Mandel’s problem. 

4.2. 1D chemo-poro-mechanics 
We reuse the domain, initial conditions, and 
geomechanics and flow properties of the 
Terzaghi problem. We have the same side 
burden of the initial pressure. The monitoring 
point is located at the third gridblock from the 
right end. Isothermal single-phase flow is 
considered. We employ ! p

c = !3.6"10!9 Pa-1 for 
numerical stability. The production and injection 
are applied to the left and right end gridblocks, 
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respectively with the same rate, 4100.1 !" kg/s. 
Quartz dissolution was assumed to be the only 
reaction as observed in the experiment  
described by Johnson et al. (1998), and modeled 
using a linear kinetic rate law. 
 
From Figure 4, we can see that the result of TR-
RM matches the result for TR-only. At initial 
time, the pressure increases instantaneously due 
to the injection, and then drops rapidly due to 
chemical dissolution. Dissolution causes an 
increase in pore volume, which causes a 
decrease in pressure based on fluid 
compressibility. After the initial time, the 
pressure increases again, reaching steady state.  

 
Figure 4. Comparison of the results between TR 

only and TR-RM for the 1D chemo-poro-
mechanics problem. 

4.3. 2D chemo-thermo-poro-mechanics 
We consider the fractured geothermal problem 
shown in Figure 5. The geothermal reservoir has 
a large dimension perpendicular to the fracture 
plane, i.e., the problem can be reduced to  one of 
multiple porosity 2D plane strain geomechanics,  
as shown in Figure 6. 
 

 
Figure 5. The schematics of a 3D fractured 

geothermal reservoir 

 

 
Figure 6. The discretized domain of the fractured 

geothermal reservoir with the 2D plane 
strain geomechanics and the multiple 
porosity model. 

 
For the 2D problem, we have 1020! gridblocks 
in the x and z directions, the sizes of which are 
uniform, 10.0 m. The size of the dimension in 
the y direction is 500 m, large enough for the 
constant temperature boundary for heat flow. 
Each gridblock has five subelements, one 
fracture and four rock matrix domains, the 
volume fractions of which are 0.002, 0.098, 0.20, 
0.35, and 0.35, respectively. The reservoir is 
fully water saturated, and the initial pressure and 
temperature at the top are 19.0 MPa and 146.7oC, 
respectively, which is much cooler than a 
producing geothermal system, but which shows 
qualitatively the same behavior. They are 
distributed with the hydrostatic pressure gradient, 
9806Pa/m, and the geothermal gradient, 
25oC/km.  The initial permeabilities of the 
fracture and the rock matrices are 13109.5 !"  m2 

and 19109.5 !"  m2, respectively, and their 
porosities are 0.5 and 0.3, respectively. We 
impose no-flow boundaries on all sides. Heat 
conductivities under desaturated and saturated 
conditions are 0.5 W/m/oC and 3.1 W/m/oC, 
respectively, for all the materials. Specific heat 
capacity is 1000 J/kg/ oC for all materials. The 
monitoring point is the fracture medium at the 
injection point, as shown in Figure 6. 
 
For geochemistry, we take the same quartz 
dissolution process used in the previous 1D 
chemo-poro-mechanics problem. For 
geomechanics, the initial vertical principal total 
stress is 19.0 MPa at the top, vertically 
distributed based on the bulk density, 2200kg/m3. 
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The horizontal principal total stress in the x 
direction is the same as the vertical stress. We 
have 19.0 MPa overburden, and horizontally 
constrained boundaries at the sides and no 
vertical displacement at the bottom. Young’s 
modulus and Poisson’s ratio for the fracture are 
213.75 MPa and 0.0, respectively. Young’s 
modulus and Poisson’s ratio for the rock 
matrices are 5.586 GPa and 0.0, respectively.  
We use 0.0=cp! Pa-1 and 0.0=cT! °C-1. Biot’s 
coefficients and thermal dilation coefficients are 
1.0 and 5105.4 !"  °C-1 for all materials. The 
injection and production wells are located on the 
right and left sides of the domain, as shown in 
Figure 6. Injection and production rates are 50.0 
kg/s, with 20°C water and 50.0 kg/s with water 
of the reservoir temperature, respectively. 
 
Figure 7 shows the comparison between chemo-
thermo-poro-mechanics and thermo-poro-
mechanics without reactive transport. Figure 8 
also shows the comparison between TR only 
with and without reactive transport. In Figure 7, 
unlike with TR only, we observe the increase in 
pressure with TR-RM, resulting from the 
complicated interactions between the fracture 
and rock matrices due to mechanical and thermal 
contraction or dilation. 
 
Comparing Figure 7 with Figure 8, we find that 
cold-water injection induces thermal contraction, 
followed by the support of the reservoir pressure, 
which can be properly captured by the coupling 
between flow and geomechanics.  
 
In Figure 8, TR-only with geochemistry shows 
more pressure drop than TR-only without 
geochemistry, because the dissolution increases 
the pore volume, as shown in Figure 9, which 
causes the pressure drop. However, we observe 
that the pressure of chemo-thermo-poro-
mechanics is slightly higher than the pressure of 
thermo-poro-mechanics. The monitoring point is 
affected by the compaction due to dissolution at 
another location, and undergoes additional 
compaction and decrease in porosity, unlike 
thermo-poro-mechanics without the reactive 
transport shown in Figure 9. Note that the 
perturbation of geomechanics at a certain 
location affects the entire domain 

instantaneously, because of the nature of quasi-
static mechanics.  

 
Figure 7. Comparison of the pressure results 

between chemo-thermo-poro-mechanics, 
(‘Chem’), and thermo-poro-mechanics 
only, (‘No chem’).  

 
Figure 8. Comparison of the pressure results 

between with (‘Chem’) and without (‘No 
chem’) reactive transport in TR-only. 

 
Figure 9. Comparison of Lagrange’s porosities 

among chemo-thermo-poro-mechanics, 
thermo-poro-mechanics only, and TR only 
with and without reactive transport. 
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CONCLUSIONS 

We proposed a sequential implicit formulation 
and algorithm for chemo-thermo-poro-
mechanics, and implemented the coupling 
algorithm within a flow and geomechanics 
simulator. This simulator can handle the 
multiple porosity model in fractured geothermal 
reservoirs and nonlinear permeability and 
geomechanics, including plasticity. From 
numerical simulation of the 2D fractured 
geothermal reservoir, we found that chemo-
thermo-poro-mechanics can yield significantly 
different results from thermo-poro-mechanics, 
because small pore volume changes can lead to 
large fluid pressure effects. 
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